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Abstract

This paper discusses congestion control from a game-theoretic perspective. There are two

basic premises: (1) users are assumed to be independent and sel�sh, and (2) central administra-

tive control is exercised only at the network switches. The operating points resulting from sel�sh

user behavior depend crucially on the service disciplines implemented in network switches. This

e�ect is investigated in a simple model consisting of a single exponential server shared by many

Poisson sources. We discuss the extent to which one can guarantee, through the choice of switch

service disciplines, that these sel�sh operating points will be e�cient and fair. We also discuss

to what extent the choice of switch service disciplines can ensure that these sel�sh operating

points are unique and are easily and rapidly accessible by simple self-optimization techniques.

We show that no service discipline can guarantee optimal e�ciency. As for the other properties,

we show that the traditional FIFO service discipline guarantees none of these properties, but

that a service discipline called Fair Share guarantees all of them. While the treatment utilizes

game-theoretic concepts, no previous knowledge of game theory is assumed.
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1 Introduction

Congestion has long been a problem in computer networks. During the past decade, much e�ort

has been devoted to understanding the nature of congestion and developing techniques for its

control. Many di�erent congestion control mechanisms have been proposed, and numerous studies

have been published evaluating their relative performance. However, buried beneath these detailed

mechanistic proposals is a fundamental disagreement about network design philosophy. Most of the

earlier proposed congestion control schemes assume the cooperation of network users1, requiring

them to implement a particular 
ow control algorithm at the end hosts [11, 13, 27]. In this approach,

users adopt a centrally mandated algorithm, and the role of the designer is to make the resulting

system-wide behavior achieve certain systemic goals such as high utilization or low delay. This is

the usual paradigm in the study of distributed systems; while evaluating the relative merits of the

various proposals is often technically di�cult, it poses no particular paradigmatic challenge.

Some of the more recent work takes a rather di�erent approach. This approach not only concedes

that it is impossible to centrally mandate the behavior of end users, but actively contends that

such centralized administrative control is not advisable. Rather than following some mandated

algorithm, in this approach users are assumed to act \sel�shly" to further their own individual

interests. The role of the designer here is con�ned to mandating the behavior of network switches

(which are assumed to be under centralized administrative control). The goal is to design these

switch service disciplines so that the network will deliver good service in spite of sel�sh user behav-

ior. Reference [3] is an example of this approach; it focuses on designing e�ective service disciplines

in network switches and then letting end hosts do whatever is in their own best interest.

This approach, with its emphasis on individual incentives, does not �t the typical paradigm used in

the study of distributed systems. If users are not following some centrally mandated algorithm, how

can one model user behavior? How can one describe the eventual network operating point in such

noncooperative systems? If users are acting to further their own interests, rather than that of the

system, by what criteria does one evaluate the resulting system-wide behavior? These questions,

which involve individual incentives in a fundamental way, are largely foreign to computer science;

however, they are the very core of game theory. The purpose of this paper is to illustrate how game

theory can be used to formulate and answer, at least on a theoretical level, these incentive questions.

Other than reviewing some of the arguments brie
y in Section 2.2, we are not revisiting the basic

debate between the two approaches to congestion control. Rather, we are merely exhibiting how

one can formalize and analyze this second approach using a game-theoretic perspective.

We will apply this game-theoretic perspective to a very simple system: a single switch shared by

N users. Each user sends a Poisson stream of packets through the switch. The rate of the i'th

user's Poisson stream is denoted by ri; the algorithm by which the user controls this rate is called

the 
ow control algorithm. The switch is serviced by an exponential server with preemption. One

measure of the congestion experienced by a user is the average number of that user's packets that

1The term user here is purposely ambiguous. While the human user ultimately controls the implementations used
on the network device, it is the device which typically controls the network behavior in the short term. To avoid

continually tripping over this distinction, we will use the term user to refer to whatever entity is controlling the

behavior.
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are waiting in the server's queue2. This congestion, or average queue length, will be denoted by ci

and depends on the set of rates rj and on the switch service discipline. In this paper we explore

the possibilities and limitations of designing service disciplines that produce desirable results in the

presence of sel�sh user behavior. The game-theoretic implications of switch service disciplines, and

their relevance to network congestion control, was �rst articulated by Nagle in [26].

In the next section we present the basic premises of the game-theoretic approach, and justify its

relevance. Section 3 contains the mathematical details of the simple single-switch model. In Section

4 we de�ne the properties one might desire, and then present technical results on the possibility

of achieving these properties. Due to their length, the proofs of the technical results are presented

in the Appendix. We conclude in Section 5 by discussing related work and generalizations of the

model.

2 The Game-Theoretic Perspective

In this section we �rst discuss the basic premises of our game-theoretic approach. We then argue

that this approach is indeed somewhat relevant to real design issues and is not merely a theoretical

whimsy.

2.1 Basic Premises

Our analysis is based on four main principles:

1. User satisfaction is a function of the amount and quality of service provided by

the switch.

The amount of service is given by ri. The quality of service is measured in terms of congestion,

which here we are equating with the average queue length, ci; note that increasing ci re
ects

a decreasing quality of service. The content of the �rst principle is formalized via utility

functions Ui(ri; ci) which express the user's degree of satisfaction with a particular level of

service. A user's preference for allocation3 (ri; ci) over allocation (�ri; �ci) is represented by

having Ui(ri; ci) > Ui(�ri; �ci). These utility functions allow us to express the fact that di�erent

users may have very di�erent preferences; some users are very sensitive to congestion and

others are more sensitive to throughput. Utility functions are private, known only by the

individual user, and not by other users or the switch. Furthermore, users are aware only of

their own quantities ri and ci and not those of others.

2. Users are sel�sh.

2We could equivalently, and perhaps more naturally, use the average delay of packets. However, this would require

the convexity condition on Ui introduced in Section 3.2 to be signi�cantly more complicated. Note that since ci = ridi,

we have lost no generality by using the average queue size instead of the delay.

3In keeping with its economic usage, we are using the term allocation to describe the quantity and quality of

service given to a user by the network. Contrary to standard networking usage, we are not using the term allocation

to refer to reserved resources such as bandwidth or bu�ers.
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Each user employs a 
ow control algorithm that maximizes their individual utility by varying

ri. When each user acts in this sel�sh way, the stable operating points of the system are Nash

equilibria (to be de�ned later).

3. The performance of the switch is evaluated solely in terms of the level of user

satisfaction it provides.

Traditional discussions of network congestion focus on switch-centered quantities, such as

power [13, 14, 27], line utilization [12], or total queueing delay. This neglects the fact that

users could have very di�erent preferences. In contrast, we use only the collection of utility

functions Ui in assessing the performance of the switch.

4. The switch algorithms are under central administrative control.

While users are independent entities, the switch is a shared resource. As such, it is under

central administrative control. Our focus is on the switch service disciplines, which control

the allocation of congestion.

Our challenge is to design the switch service disciplines so that, for every collection of utility

functions, the system exhibits good performance in spite of the sel�shness of individual users. This

notion of \good" performance has three aspects. First, the Nash equilibria should be e�cient and

fair. Second, the Nash equilibria should be easily and rapidly accessible by simple self-optimizing

techniques. Third, the system should provide some minimal performance guarantees even out of

equilibrium.

In Section 4 we de�ne these various properties more precisely and discuss to what extent one can

achieve them. We show that there is no service discipline that always achieves optimal e�ciency

at the Nash equilibrium. However, it is possible to always achieve the other desirable properties.

There is a service discipline, the Fair Share discipline, that guarantees all of these properties, and

is the only monotonic service discipline that guarantees any of them (we will de�ne monotonicity

later). The Fair Share service discipline is based on the intuition that users should always receive

their fair share of the service, in terms of amount and quality, regardless of what other users are

doing. This insularity, or partial independence, enables the Fair Share service discipline to provide

good service in the presence of sel�sh users. While the Fair Share service discipline is de�ned merely

in terms of this simple M/M/1 system, it is similar in spirit to Fair Queueing [3] and other related

packet scheduling disciplines [9, 15]. Our results provide further evidence for the superiority of

Fair Queueing over the traditional FIFO service discipline, but this is not our focus in this paper.

Instead, our intent here is to formulate the incentive issues in a more rigorous and systematic,

albeit theoretical, manner.

2.2 In Defense of Sel�shness

The central assumption in the game-theoretic approach described here is that users are noncoop-

erative and sel�sh. Many dismiss this as an unacceptably pessimistic view of human nature, and

contend that we can count on the cooperation of users. Since, as we shall show, the noncooperative

algorithms presented here do not give optimally e�cient (Pareto) Nash equilibria, and cooperative

algorithms can achieve optimal e�ciency, the question arises: if we can assume user cooperation,
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why not use cooperative algorithms? In cooperative solutions, users must not only be willing to

cooperate, but there also must be universal agreement on what it means to cooperate. This re-

quires a single, universally accepted 
ow control algorithm which, given a user's particular needs

as expressed by her utility function, dictates a user's actions. There are three main problems with

this cooperative approach.

First, cooperation requires that users know their utility function in the abstract; i.e., be able to

make comparisons between allocations without having a chance to experience them. This is quite

di�erent than the knowledge required in a hill-climbing implementation of the sel�sh view4, where

users need only make local comparisons between allocations they actually receive (i.e., they only

need to ask if they are happier now than they were a few minutes ago). For instance, when watching

TV one cannot specify the desired level of contrast quantitatively, but one merely adjusts the knob

until the picture looks best. Similarly, for some applications we expect network controls to be

adjusted to achieve the best performance, rather than having the preferences speci�ed a priori.

Such optimizing adjustment procedures are inherently sel�sh.

The second problem with the cooperative view is that a universally accepted 
ow control algorithm

chains the network to obsolete technology. The needs and desires of users will change quickly as

workstation technologies and applications change. The inertial drag of universal compatibility will

likely result in 
ow control algorithms that change slowly. Thus, we can expect that centrally

mandated 
ow control algorithms will often lag behind the needs of users.

Lastly, there is the obvious problem of vulnerability to sel�sh users. Flow control algorithms based

on the assumption of universal cooperation are vulnerable to isolated instances of cheating. Once

users start to cheat, the performance of the system as a whole will deteriorate. In this context,

cheating is not done only by those users with nefarious intent. Because 
ow control is often an

application speci�c concern, many applications already bypass TCP and do their own 
ow control.

Moreover, even seemingly benign actions such as opening several simultaneous TCP connections

to achieve parallelism is a form of cheating in this context. Thus, it is hard to imagine a situation

in which such cheating was not widespread.

These three objections to the cooperative model of 
ow control must be weighed against the inability

of the noncooperative model to provide optimal e�ciency. Note, however, that the noncooperative

model of users is not that users are necessarily malicious, but merely that they behave in such a

way as to optimize their own satisfaction. Placing the onus on the users to optimize their utility

enables networks to satisfy a wide variety of service requirements. In addition, users need not have

abstract knowledge of their preferences; instead, they can use simple hill-climbing techniques to

�nd their optimal operating point. Moreover, no universal 
ow control algorithm is required, so

innovation is unimpeded. While the game-theoretic notion of sel�shness may initially appear to

be, at best, a regrettable reality, in fact it may indeed be the best way to ensure good performance

in the large, heterogeneous, and rapidly changing networks of the future.

4A hill-climbing implementation of the sel�sh view is where users adjust their ri locally attempting to increase
their Ui, much as in standard hill-climbing algorithms for optimization.
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3 Mathematical Model of System

3.1 Switches

Our basic model is a single queue with an exponential server (of service rate 1) with each of the

N users contributing an independent Poisson input stream of packets with rate ri, ri > 0. The

average queue of each user's packets at the switch, ci, depends on the service discipline used. The

switch is a shared resource, and the pair of quantities (~r;~c) can be viewed as an allocation of that

resource among the users.

This allocation cannot be arbitrary; the set of feasible allocations, those that can be realized by

a nonstalling or work-conserving service discipline (one in which the server is idle only when the

queue is empty), will satisfy the constraint F (~r;~c) = 0 where

F (~r;~c) �
NX
i=1

ci � f(~r)

with the de�nitions f(~r) = g(
PN

i=1ri) and g(x) = x
1�x

[2, 28]. This constraint merely requires that

the total average queue be given by the standard M/M/1 formula. Feasible allocations will also

satisfy the further constraint that, numbering the users so that the ci
ri
are in increasing order, the

following inequalities hold for each k 2 [1; N � 1] (these constraints must hold for all orderings of

users, but it is su�cient to check the ordering where the ci
ri
are increasing):

kX
i=1

ci � g(
kX
i=1

ri)

These subsidiary constraints embody the fact that no subset of users can have an aggregate average

queue that is less than the M/M/1 result for that subset.5

Each service discipline gives rise to an allocation function ~C(~r) such that the allocations (~r; ~C(~r))

always satisfy these constraints. We will restrict the set of service disciplines considered to those

that satisfy the following criteria. The allocations (~r; ~C(~r)) must always lie in the interior of the

feasible set, where the above inequalities are not saturated. Also, since the switch has no a priori

knowledge about the users, the function ~C(~r) must be symmetric (i.e., a permutation of the r's

results in the same permutation of the c's). Furthermore, the allocation functions must be C1

(have continuous �rst derivatives), with �nite but possibly discontinuous second derivatives (i.e.,

the one-sided second derivatives always exist and are �nite). Let AC denote the set of acceptable

allocation functions. We will usually be restricting ourselves to the natural domain D of these

functions: D � f~rjri > 0 and 1 >
PN

i=1rig.
6 Each allocation function ~C(~r) is realized by many

service disciplines. Since we are concerned here with only the average queue length, and not higher

moments thereof, we will use the terms \allocation function" and \service discipline" somewhat

interchangeably.

5All of the results in this paper apply to any queueing system where the set of all feasible allocations can be

represented by a strictly increasing and strictly convex function g in the above constraint expressions. This would

include nonpremptive M/M/1 systems, as well as M/G/1 systems.

6However, for technical reasons arising in Section 4.2.2, we actually de�ne the allocation functions on all of <n+,

and allow the allocated ci to take on in�nite values.
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As examples, and for future reference, let us de�ne two sample allocation functions. First, consider

the proportional allocation, where each user's average queue is proportional to their throughput ri.

This allocation is realized by the FIFO service discipline, and is given by the well-known formula

Ci
P (~r) =

ri

1�
PN

j=1rj

Another example, �rst introduced in [32], is the Fair Share allocation function. With the users

labeled so that their ri's are in increasing order, the k'th user's allocation is de�ned in terms of the

preceding allocations: CFS
k (~r) is the solution to

F ((r1 ; r2 ; r3 ; : : : ; rk�1 ; rk ; rk ; rk : : :) ; (C1 ; C2 ; C3 ; : : : ; Ck�1 ; Ck ; Ck ; Ck : : :)) = 0

Speci�cally, CFS
1 (~r) =

g(nr1)

n
, CFS

2 (~r) = CFS
1 (~r) +

g((n�1)r2+r1)�g(nr1)

n�1
, and, more generally,

CFS
k (~r) = CFS

k�1(~r) +
g((n� k + 1)rk + rk�1 + : : :+ r1)� g((n� k + 2)rk�1 + rk�2 + : : :+ r1)

n� k + 1

This is C1 everywhere in D, and is locally C2 whenever ri 6= rj for all i 6= j. Also,
@CFS

i

@ri
> 0,

@2CFS
i

@r2
i

> 0,
@CFS

i

@rj
� 0, and for i 6= j we have

�
@CFS

i

@rj
> 0

�
, (rj < ri). Thus C

FS
i locally depends

only on those rj such that rj � ri; i.e., small variations in rj will a�ect C
FS
i if and only if rj � ri.

The resulting triangularity of the matrix
@CFSi
@rj

is crucial in deriving the properties of the Fair Share

service discipline, and re
ects the partial insularity this service discipline provides.

This allocation is realized by a preemptive priority queueing algorithm best explained through the

example depicted in the table below. In this example, there are four users, labeled so that the ri

are in increasing order. All of user 1's packets are in the highest priority class, and all of the other

users get the same rate r1 of packets in the highest priority class. Similarly, the rest of user 2's

packets are in the second highest priority class, and all of the other users get the same rate r2� r1

of packets in the second highest priority class. The pattern repeats until all of the throughput is

assigned a priority.

FS Priority Level

User A B C D

1 r1 - - -

2 r1 r2 � r1 - -

3 r1 r2 � r1 r3 � r2 -

4 r1 r2 � r1 r3 � r2 r4 � r3

Table 1: A priority queueing algorithm which implements the Fair Share allocation function

3.2 Users

Each user has a utility function Ui which is a function only of that user's own service allocation.

We consider only those utility functions Ui(ri; ci), which are strictly monotonic in both variables,
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increasing in ri and decreasing in ci. Furthermore, we require that Ui be a convex function and C2

everywhere7. Denote by AU the set of acceptable utility functions. This is not a requirement placed

on users (i.e., it is not something we require them to do, which would violate the user independence

assumption) but is only a statement about what we consider a reasonable model of reality (and

these are also standard assumptions in the economics literature).

The utility function Ui is merely a representation of the user's preference orderings of the various

allocations (ri; ci). Ui contains no metrical information, so all subsequent results must be invariant

under the transformation Ui 7! Gi(Ui) for strictly monotonically increasing functions Gi. Note

that this renders meaningless quantities that compare or combine utility functions from di�erent

users, such as the sum
PN

i=1Ui.

The assumption of user sel�shness means that users self-optimize; each user i adjusts the rate

parameter ri so as to maximize the utility function Ui. We don't specify how this optimization

occurs, but we assume that it is equivalent to holding the other rj constant while ri is varied; under

these conditions if the system reaches an equilibrium it must be a Nash equilibrium.

Let ~rjir̂i denote the vector with the i'th element given by r̂i and all other elements j given by rj.

Then, a Nash equilibrium can be de�ned as follows:

De�nition 1 A point ~rNash is a Nash equilibrium point if

Ui(ri
Nash; Ci(~r

Nash)) � Ui(r̂i; Ci(~r
Nash

j
ir̂i)) for all r̂i and for all i

Thus, at a Nash equilibrium no user is able to further increase her utility function by a unilateral

change in her Poisson rate.

At a Nash equilibrium we have the necessary �rst derivative condition (FDC) dUi
dri

= 0 for all i.

This condition can be reexpressed as:

Mi(ri; ci) = �
@Ci

@ri

with Mi(ri; ci) de�ned as the ratio of marginal utilities

Mi(ri; ci) �

@Ui
@ri
@Ui
@ci

The Nash equilibrium describes, given our assumptions, the operating point of a set of sel�sh users.

What are the properties of these Nash equilibria, and can we choose a service discipline that ensures

certain desirable properties hold there? This is the subject of the next section.

4 Achieving Good Performance

In this section we discuss what properties constitute good performance, and then analyze if these

properties can be realized through the choice of service discipline. It is extremely important to

7Actually, all of the results presented here hold without requiring di�erentiability; we merely use di�erentiability

to simplify the presentation (we can use �rst derivative conditions rather than discrete di�erences).
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note that these properties must exist for all possible sets of acceptable utility functions, and can

refer only to the levels of user satisfaction and not to purely switch-oriented quantities. One

can somewhat arti�cially divide the properties of \good" performance into three categories: in-

equilibrium, getting-to-equilibrium, and out-of-equilibrium.

We discuss properties in these categories separately in the next three sections. We discuss, for each

property, the possibility of �nding a service discipline which provides it. For those properties which

are achievable, we will also address to what extent the satisfying service disciplines are unique.

These uniqueness results involve a restricted set of allocation functions, those which obey certain

monotonicity conditions. We de�ne a subset of AC, called MAC, of monotonic allocation functions

as follows:

De�nition 2 An allocation function in AC is in MAC if

1.
@Ci
@rj

� 0 for all i and j

2.
@Ci
@ri

> 0 for all i

3.

n
@Ci
@rj

= 0 at ~ro
o
)

n
@Ci
@rj

= 0 for all ~r with rk � rok ; k 6= i; and ri � roi

o

The �rst two conditions require that when ri increases, ci increases and no other user's queue

decreases. Thus, no user bene�ts when another user consumes more throughput. While these

two conditions might have some claim to reasonability, the third condition is purely technical: in

essence, it states that whenever @Ci
@rj

= 0 (i 6= j), the derivative remains 0 as ri decreases and as

rk (k 6= i) increases. These conditions are satis�ed by such typical service disciplines as FIFO,

LIFO, Processor Sharing, Polling, and HOL Priority; these conditions are also satis�ed by the Fair

Share allocation function. Whatever their merit, these conditions are used only for the uniqueness

results; there may be other service disciplines outside of theMAC set that also provide our desirable

properties (although we have yet to �nd such a counterexample).

While we assume that users are sel�sh and optimize their own performance, there will also be cases

where users are not able to do so. A particular instance of a nonoptimizing user is one which does

not vary ri at all. Given a set of users and an allocation function, we can de�ne various subsystems

in which we hold one or more of the ri's constant while the rest are allowed to vary. The induced

allocation function for a subsystem is merely the same function ~C(~r) but with some of its variables

treated as constants. It is reasonable to require that these induced allocation functions have the

same set of desired properties. Note that if the original allocation function ~C(~r) is in MAC then

the induced allocation function is also in MAC for the various subsystems.

We now describe the three aspects of \good" performance in more detail.

4.1 Nash Equilibria

Our basic premise is that users are sel�sh, and so that all equilibria of the system are Nash equilibria.

Therefore, the most obvious aspect of good performance is that these Nash equilibria have certain

desirable properties. Along this line, we will discuss whether or not one can guarantee that the

Nash equilibria are fair and optimally e�cient.
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4.1.1 E�ciency

One of the central themes of this paper is that the e�ciency of the algorithm should be measured

strictly in terms of user satisfaction. The standard criterion for e�ciency in these circumstances is

that of Pareto optimality.

De�nition 3 An allocation (~r;~c) is Pareto optimal if there is no other feasible allocation (~�r;~�c)

such that

1. Ui(ri; ci) � Ui(�ri; �ci) for all i

2. Ui(ri; ci) < Ui(�ri; �ci) for at least one i

The set of Pareto optimal allocations is sometimes referred to as the noninferior set; there are no

other allocations that every user would prefer. Equivalently, a point (~r;~c) is Pareto optimal i�

there exists a vector ~W , Wi � 0 and
PN

i=1Wi = 1, such that
PN

i=1WiUi(ri; ci) �
PN

i=1WiUi(�ri; �ci)

for all feasible (~�r;~�c). Thus, each Pareto allocation maximizes at least one weighted sum of utilities.

Using this de�nition of Pareto, we can see that an interior allocation is Pareto e�cient only if the

following �rst derivative condition (FDC) holds:

Mi(ri; ci) = Zi(ri; ci)

with the de�nition

Zi(ri; ci) �

@F
@ri
@F
@ci

= �
@f

@ri
= �

0
@1� NX

j=1

rj

1
A
�2

Can we �nd an allocation function ~C(~r) such that, for every admissible utility pro�le8 ~U 2 AUN ,

the Nash equilibrium is Pareto optimal? The answer is no (a similar result9 is discussed in [23],

page 1023).

Theorem 1 There is no allocation function in MAC such that every Nash equilibrium is Pareto

optimal.

In light of the negative result of Theorem 1, one might attempt to generalize the allocation func-

tions by including extra parameters by which users might more e�ectively signal their preferences.

Consider, for instance, allocation functions
~̂
C(~r; ~�) where ~� is a vector of user speci�ed signalling

parameters. The impossibility result of Theorem 1 applies to these allocation functions as well.

Corollary 1 Consider allocation functions
~̂
C(~r; ~�) that are C2 and, for every constant ~�, are in

MAC. There is no allocation function of this form such that every Nash equilibrium is Pareto

optimal and such that the set of all Nash equilibria has nonempty interior.

8We are using the terms utility pro�le, utility vector, and set or collection of utility functions interchangeably, and

they all refer to the set of utility functions corresponding to the set of users. These utility pro�les must always be a

vector in AUN , the n-fold Cartesian product of AU .

9In that result, the constraint function has a di�erent character which rules out the \separable" forms discussed

in our proof and in Corollary 2.
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However, if we combine this extra parameter ~� with stalling service disciplines, where we replace the

constraint F (~r; ~C(~r; ~�)) = 0 with F (~r; ~C(~r; ~�)) � 0, we can �nd allocation functions whose Nash

equilibria are all Pareto optimal. See [33] for an explicit construction. This family of mechanisms,

however, represents a much more general allocation mechanism than just the design of nonstalling

service disciplines ~C(~r).

The goal of guaranteeing Pareto optimality of Nash equilibria solely through the design of the

service discipline ~C(~r) might, in general, seem overly ambitious. However, the negative result of

Theorem 1 is actually a property of our particular constraint function. If our problem had instead

the constraint function F̂ (~r;~c) �
PN

i=1ci � f̂ (~r) with f̂ =
PN

i=1ri
2, then every Nash equilibrium

would be Pareto optimal under the allocation function Ci(~r) = ri
2. This result generalizes to the

following Corollary, where we consider the constraint
PN

i=1ci = f̂(~r) without any of the subsidiary

inequality constraints of our original problem:

Corollary 2 : Consider a convex
10 C2

constraint function f̂(~r):

1. If f̂(~r) can be expressed as f̂ (~r) = 1
N�1

PN
i=1hi(~r) with

@hi
@ri

= 0 and f̂(~r) � hi(~r) � 0, then

there is an allocation function ~C(~r) such that every Nash equilibrium is Pareto optimal.

2. If f̂(~r) cannot, in any open neighborhood, be expressed as f̂(~r) = 1
N�1

PN
i=1hi(~r) with

@hi
@ri

= 0,

then there is no MAC allocation function ~C(~r) such that every Nash equilibrium is Pareto

optimal.

Theorem 1 states that there is no allocation function such that, for all sets of utility functions in

AU (recall that AU is the set of acceptable utility functions), every Nash equilibrium is Pareto

optimal. However, for a given set of utility functions, it is possible to design a service discipline

whose Nash equilibria are Pareto optimal. Furthermore, if all users have the same utility function,

then the Nash equilibria of the Fair Share allocation mechanism are always Pareto optimal. This

result generalizes to the following theorem.

Theorem 2 Consider an allocation function in MAC, and a vector of utility functions in AUN
.

1. If the Nash equilibrium is Pareto optimal, then ri = rj for all i; j.

2. In all subsystems, any completely symmetric ~r that gives rise to a Pareto optimal allocation

is also a Nash equilibrium of the Fair Share allocation function.

Thus, while it is impossible to guarantee Pareto optimal Nash equilibria, there are occasions when

Nash equilibria are Pareto optimal. The Fair Share allocation mechanism achieves all such possible

Nash/Pareto points. In contrast, the proportional allocation, and any other allocation function

that always has @Ci
@rj

> 0, never has Pareto optimal Nash equilibria.

4.1.2 Fairness

Another obviously desirable property is fairness. There are several de�nitions of fairness in the

economics literature [36]. The most relevant for our purposes is the envy-free de�nition. User i is

10The set of allocations ~r;~c satisfying
PN

i=1
ci � f̂(~r) must be a convex set.
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said to envy user j if Ui(ri; ci) < Ui(rj ; cj). Note that envy does not involve a comparison between

two users' utility functions, merely a comparison between their two allocations using the preference

ordering of one of the users. An allocation is deemed fair if it is envy-free (i.e., no user envies

another).

Given our model of user behavior, we clearly desire that Nash equilibria be envy-free. However,

as we discuss in Section 4.2.2, we may not always be at a Nash equilibrium. A stronger condition

is that whenever user i has chosen ri so as to maximize Ui, user i envies no one. Essentially this

states that no matter what anyone else does, a user, if she maximizes her own utility, will envy no

one. We call this property being unilaterally envy-free. Unilaterally envy-free allocation functions

have envy-free Nash equilibria.

De�nition 4 An allocation function is unilaterally envy-free ifn
Ui(ri; Ci(~r)) � Ui(r̂i; Ci(~rj

ir̂i)) for all r̂i
o
) fUi(ri; Ci(~r)) � Ui(rj; Cj(~r)) for all j g

Theorem 3 :

1. The Fair Share allocation function is unilaterally envy-free in all subsystems.

2. Fair Share is the only MAC allocation function which is unilaterally envy-free.

4.2 Converging to Nash Equilibrium

In addition to considering the properties at a Nash equilibrium, we must also address how the

system reaches equilibrium. To that end, we discuss under what circumstances these equilibria are

unique. We also investigate both the viability of generalized hill-climbing optimization techniques,

and also the resulting rate of convergence to equilibrium using simple incremental hill-climbing

optimization techniques.

4.2.1 Uniqueness of Nash Equilibrium

Clearly, if there is more than one Nash equilibrium for a given pro�le of utility functions, then

there is an unavoidable ambiguity in the resulting noncooperative outcome. This is to be avoided,

since such ambiguity leads to \super-games" whereby the users attempt to a�ect which equilibrium

the system reaches. In [23]11, we show that the Fair Share allocation function ensures that there

is always one and only one Nash equilibrium; moreover, we show that it is the only MAC service

discipline with this property.

Theorem 4 (from [23]):

1. The Fair Share mechanism always has a unique Nash equilibrium.

2. Fair Share is the only MAC allocation function for which every Nash equilibrium is unique.

11The assumptions in that paper are slightly di�erent than here, but the same proof techniques apply with only

minor and straightforward modi�cations. Also, the characterization result (the result in [23] corresponding to the
second part of Theorem 4) is signi�cantly stronger than what we quote here. Note that in the economics literature,

the Fair Share allocation function is referred to as the serial cost sharing method, a terminology introduced in [23].
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4.2.2 Robust Convergence

Previously we have considered the existence of, and the properties of, Nash equilibria. We now

address the actual dynamics of self-optimization. The most naive self-optimization algorithm is

a simple incremental hill-climbing technique, with users sampling the change in Ui in response to

small changes in ri. Against a �xed environment, the dynamics of a single hill-climbing optimizer

are relatively robust. However, when all the users are performing this optimization simultaneously

the dynamics are considerably more complicated. In particular, the dynamics depend on the time

constants used in the sampling procedure (these time constants control how long a particular value

of ri is sampled when determining its payo�). A more sophisticated user could use a longer time

constant in her sampling rate, allowing the other users to equilibrate before varying her own ri.

In essence, this sophisticated user would become a leader, with the other less sophisticated users

following; the leader would choose to sample a value for ri and the \following" users, because they

had much shorter time scales, would quickly equilibrate to a Nash equilibrium in the n� 1 person

subsystem. The leader could then choose her ri based on which of these n � 1 person subsystem

Nash equilibria maximized her utility. Furthermore, simple hill-climbing users could be exploited if

a sophisticated user had information about other users' utility functions, and thus knew how their


ow control would react. Both of these situations give rise to another type of equilibrium, known

as the Stackelberg equilibrium.

De�nition 5 Let user 1 be the leader, and let ~�r(r1) be a function such that (1) the �rst component

of the vector is given by the argument, and (2) for all i > 1, Ui(�ri; Ci(~�r)) � Ui(r̂i; Ci(~�rj
ir̂i)) for all

r̂i. We then consider it a Stackelberg equilibrium with user 1 leading if

U1(r1; C1(~�r(r1)) � U1(r̂1; C1(~�r(r̂1))) for all r̂1

The leader's utility in Stackelberg equilibrium is never less than it is in the corresponding Nash

equilibrium. If users bene�t by becoming the leader, they might devote considerable e�ort to

exploiting other users by either employing sophisticated optimizing strategies or attempting to

discover other users' utility functions. This is not desirable, and can be avoided if the Stackelberg

equilibria are also Nash equilibria. Users employing simple optimization strategies would then be

protected from those using sophisticated techniques. Thus, one desires that allocation functions

give rise to Nash equilibria that are also Stackelberg equilibria.

More generally, the convergence to the Nash equilibrium should be robust, in that convergence

would be assured as long as users employed any reasonable form of self-optimization. In order to

consider this question, we model optimization as a process of reducing the candidate values for

ri; each user initially considers the entire interval of values [0; 1] and then, based on the achieved

performance, eliminates some of them12. We say that such a learning algorithm is reasonable if

it eventually eliminates all values of ri which produce strictly worse performance than another

candidate value for ri. To be precise, let Sti denote the remaining candidate values for user i at

12Because users are acting independently here, we cannot guarantee that all candidate ~r's will stay within D; this
is why we need the allocation functions de�ned outside of D even though there are singularities there. This requires

that outside of D we assign in�nite ci's to some users, and that we extend the range of the utility functions to

accommodate these in�nite values for ci. These extensions do not signi�cantly alter any of the formalism presented
here.
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time t, and let St = St1�: : :�S
t
n. Then, user i must eventually eliminate any value s such that there

exists an ŝ 2 Sti such that Ui(s; Ci(~rj
is)) < Ui(ŝ; Ci(~̂rj

iŝ)) for all ~r;~̂r 2 St. This is an extremely

weak requirement on the optimization procedure, in that it is extremely rare that the optimization

procedure is required to eliminate candidate values. We will call these generalized hill climbing

algorithms; we discuss some examples of such algorithms based on learning automata in [8].

If all users are using generalized hill climbing algorithms, then the system will eventually operate

within some reduced set S1 in which no more values are eliminated. In order for convergence to be

robust, we want S1 to be a single point (which, of necessity, must be a Nash equilibrium); that is,

we want any combination of generalized hill climbing optimization algorithms to always eventually

converge to the unique Nash equilibrium.

Note that this set S1 contains all Stackelberg equilibria. Thus, the condition that S1 is a single

point is a much stronger statement than requiring that all Nash equilibria are also Stackelberg

equilibria.

We have the following Theorem; the �rst part follows directly from a result in [8].

Theorem 5 :

1. (from [8]) With the Fair Share allocation function, all generalized hill climbing algorithms

converge to the Nash equilibrium.

2. Fair Share is the only MAC allocation function for which, in all subsystems, every Nash

equilibrium is also a Stackelberg equilibrium.

The fact that the Fair Share allocation function is the only MAC allocation function for which S1

is a single point follows trivially from Theorem 4, since all Nash equilibria must lie within S1.

A second consideration is that we want to enable more e�cient protocols that would eliminate the

hill-climbing technique altogether for those applications that wish to. An extreme example of this

is to allow users to communicate their utility functions directly to the switch. Then, the allocation

mechanism becomes a function of the reported utility functions. There is a function ~B that maps

the set of reported utility functions into a set of (r; c) allocations: (ri; ci) = Bi(
~̂
U) (where we denote

reported utility functions, as opposed to the true utility functions, by a hat). Unless the allocation

mechanism is carefully designed, users will have an incentive to lie about their utility function, and

sophisticated users could again exploit naive ones. An allocation mechanism that encourages users

to tell the truth is called a revelation mechanism, and has the following property.

De�nition 6 ~B is a revelation mechanism if Ui(Bi(
~̂
U)) � Ui(Bi(

~̂
U jiUi)) for all

~̂
U and Ui.

In [23] (therein see Theorem 2 and the comment on page 1028), we show that indeed the Fair Share

allocation mechanism produces a revelation mechanism. Denote by ~BFS the function that maps a

vector of utility functions into the ~r and ~c resulting from the unique Nash equilibrium of the Fair

Share allocation function.

Theorem 6 (from [23]) The allocation mechanism ~BFS
is a revelation mechanism.

When we apply stringent di�erentiability assumptions, we have shown in [34] that the Fair Share

allocation function is the only one which has this property. Satterthwaite and Sonnenschein [31]

were the �rst to note the crucial role of acyclicity in such revelation mechanisms.
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4.2.3 Rapid Convergence

In the previous section we wanted convergence to be robust, and wanted simple hill-climbing op-

timization techniques to be invulnerable to more sophisticated strategies. We now impose the

criterion that incremental hill-climbing techniques converge rapidly, at least in the linear regime.

We assume that each user can, either through slight variations in ri or by direct communication

with the switch, determine the derivatives @Ci
@ri

and @2Ci
@ri

2 . The quantity Ei = Mi(ri; Ci(~r)) +
@Ci
@ri

is the measure of how far from the Nash condition a user is. In the absence of any other knowl-

edge about other users and their intentions, the simplest hill-climbing technique is to use Newton's

method. Each user increments her throughput rate by an amount �i, ri(t+1) 7! ri(t)+�i, where

�i = �
Ei
dEi
dri

. Assuming that the users update their ri synchronously, the time evolution of the Ei

can be described in a linear approximation by the relaxation matrix Ai;j : Ei(t+1) =
PN

i=1Ai;jEj(t),

where

Ai;j = �(i; j)�

@Ei
@rj

@Ej
@rj

We desire an allocation function that renders this optimization strategy stable and fast. In this lin-

ear approximation, fast (i.e., superlinear) convergence occurs when the eigenvalues of the relaxation

matrix are all zero. This is equivalent to Ai;j being nilpotent; Ai;j
N = 0.

Theorem 7 :

1. The Fair Share discipline always has a nilpotent relaxation matrix in all subsystems.

2. Fair Share is the only MAC allocation function that always has a nilpotent relaxation matrix.

From Theorem 7 we know that the proportional allocation is not always nilpotent. However, the

proportional allocation may even be linearly unstable, which occurs when the stability matrix Ai;j

has eigenvalues of magnitude greater than 1. For example, in a system with N identical users each

with the linear utility function U(r; c) = r�
c, the proportional allocation gives rise to a relaxation

matrix whose leading eigenvalue is 1 � N . Recall that stability requires that all eigenvalues have

magnitudes bounded by unity, so eigenvalues of the form 1�N , for N > 2, indicate instability.

4.3 Out-of-Equilibrium

The unilaterally envy-free condition guarantees that a self-optimizing user will envy no one. This,

however, does not guarantee a satisfactory level of service to a self-optimizing user. If, for instance,

all of the other users are self-destructive, then not envying them is little consolation. Thus, we

need to address the ability of a service discipline to protect users from the actions of others, i.e. to

guarantee certain levels of user satisfaction. The utilities Ui are functions of ri and ci; while each

user has complete freedom in choosing ri, the congestion ci depends on the entire vector ~r. The

protective properties of a service discipline can be quanti�ed by the upper bound on the congestion

ci as a function of ri; Max(Ci(~̂rj
iri)) where the maximum is taken over all ~̂r. Symmetry demands
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that this bound be no smaller than Ci(~eri) =
ri

1�Nri
, where ~e = (1; 1; 1; 1; 1:::::; 1). We call a service

discipline protective if it can match this bound.

De�nition 7 An allocation function is protective
13

if Ci(~r) � Ci(~eri) for all ~r.

This protection guarantee is the best we can o�er and is, in essence, the converse of the Golden

Rule (a user has done unto her no worse than she does onto others). This condition prevents naive

sources from being unduly harmed by other users, even if these other users are being malicious. Non-

optimizing users would fare as well under a protective switch as they would under any symmetric

switch competing with N other identical users. The Nash equilibria that result from protective

allocation functions give, to each user i, a level of satisfaction that is at least as great as that

achieved at the symmetric Pareto optimal allocation in a system with all N users having the utility

function Ui.

Theorem 8 :

1. The Fair Share mechanism is protective in all subsystems.

2. Fair Share is the only MAC allocation function that is protective in all subsystems.

5 Discussion

5.1 Summary of Technical Results

We have considered an independent and sel�sh user population. One might have expected this to

lead, in the typical case, to poor network performance. With service disciplines that give rise to the

proportional allocation function, such as FIFO, this is indeed the case. Nash equilibria resulting

from the proportional allocation function are never Pareto optimal and are not guaranteed to be

fair. Users are not protected from each other, and convergence to equilibrium is not guaranteed.

However, one can avoid many of the negative e�ects of sel�shness through the choice of service

discipline. While it is impossible to guarantee that the Nash equilibrium will be Pareto optimal,

one can guarantee certain other desirable properties. The Fair Share allocation function always

has a unique Nash equilibrium, and this equilibrium is always fair. Moreover, this equilibrium can

be reached by any set of reasonable optimization algorithms, and naive hill-climbing optimization

strategies are as e�ective as more sophisticated ones.14 Furthermore, these optimization techniques

converge rapidly. Even out of equilibrium the Fair Share allocation function provides protection

to all users in all subsystems. Perhaps most importantly, the Fair Share allocation function is the

only MAC allocation function that has any one of these properties. In addition, whenever a Nash

equilibrium is Pareto optimal for any allocation function in MAC, the same Nash equilibrium can

be achieved with the Fair Share allocation function. On the basis of these results, it is clear that

the Fair Share allocation function is the best choice, at least for allocation functions in MAC.

13This is closely related to the \unanimity bound" as discussed in [21, 22, 23, 24, 25].

14In this paper we have not addressed the issue of what happens when there is a joint e�ort to manipulate the

system; that is, when a coalition of users acts in concert to gain an advantage. We have shown, in [23] (see page
1025), that all Fair Share Nash equilibria are resilient against such coalitional manipulations.

16



5.2 Applications to Real Networks

Fair Queueing is a switch service discipline for real networks (as opposed to Poisson sources and

exponential servers) which is similar to the Fair Share allocation function [3] (see also [9, 15, 26]).15

The service discipline essentially approximates a Head-of-Line Processor Sharing algorithm with-

out using time-slicing. Simulations have indicated that even with today's rather unsophisticated

protocols, and with only primitive notions of utility functions (users doing FTP's care only about

throughput, and users doing Telnet's care only about delay), Fair Queueing still provides impor-

tant advantages over the usual FIFO service discipline. In particular, Fair Queueing provides fair

allocation of throughput, lower delay for sources using less than their full share of throughput, and

protection from ill-behaved sources [3]. Thus, the results from the game-theoretic analysis pre-

sented here are consistent with what we have observed in real networks (or at least in simulations

of real networks).

5.3 Related Work

There is a rather large and rapidly growing literature of game-theoretic approaches to network

allocation. One segment of this literature, as exempli�ed by [4, 5, 6, 29], analyzes the properties

of, and algorithms to compute, Pareto optimal allocations for a given vector of utility functions.

Achieving e�ciency in this approach relies on cooperative algorithms, and so the results are not

relevant to the sel�sh user population considered here.

Another segment of this literature, represented by [1, 4, 10, 17, 18], discusses the nature of Nash

equilibria in networks using the FIFO service discipline. While these papers considers the incentive

issues we are concerned with, their approach is essentially descriptive in that they consider the

traditional network architecture and then describe the equilibria that would result from sel�sh user

behavior.

The approach we have taken here, which is also taken in [7, 16, 30, 33] combines the e�ciency

considerations of the �rst segment of the literature with the incentive considerations of the second

segment of the literature. This approach not only considers what is socially desirable (e�cient, fair,

etc.), but also how one can achieve these goals given that users are sel�sh. This notion of designing

service disciplines and other more general mechanisms which give socially desirable Nash equilibria

is borrowed directly from the economics and game-theory literatures (see [19] for an overview).

Ferguson et al. [7] developed network resource allocation mechanisms whose Nash equilibria are

always Pareto e�cient. In addition, Ferguson et al. address the iterative nature of the Nash

equilibration process and presents simulation results on stability. However, their network model

di�ers from ours in three important ways. First, all gateways are assumed to have FIFO service, so

that the set of feasible allocations is quite reduced. Thus, while the allocations determined by the

mechanisms in [7] are Pareto optimal with respect to the restricted set of FIFO-feasible allocations,

they are not, in general, Pareto optimal with respect to the complete feasible set. Second, the delay

di used in the utility functions in [7] is not the true average delay, which depends on the entire vector

15The similarity between Fair Share and Fair Queueing is based only on their being derived from the same intuition

of partial insularity; we make no claims about the two algorithms being mathematically related.
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~r, but is the \worst-case" delay which is a function of ri only. This greatly reduces the coupling

between users. Third, the utility functions are rather di�erent than the ones considered here; in [7]

users care only about throughput up to a threshold, after which they care only about delay. Such

utility functions, which essentially decouple throughput and delay (no user has marginal utility for

both at the same time), make the incentive issues much simpler.

In the present paper we only considered allocations which were achievable by nonstalling service

disciplines. In [33] we construct more general mechanisms for which all Nash equilibria are Pareto

optimal. These mechanisms require that the service discipline be stalling, or non-work-conserving.

Interestingly, it is the introduction of this ine�ciency (the stalling) that allows the Nash equilibrium

to be e�cient.

Sanders [29, 30] and Keshav [16] have introduced incentive compatible reward mechanisms for

switches, in which users optimize their utility when they cooperate so that the distinction between

sel�sh and cooperative behavior disappears. Electronic market algorithms have also been proposed

[20]. However, each of these algorithms require sidepayments of transferable utility, i.e. money,

which is outside the scope of our treatment.

The problem we pose in this paper can be thought of as a cost sharing problem, and recently there

have been several economics papers which have discussed the strategic and normative properties of

various cost sharing schemes [8, 23, 24, 25, 34, 35]. These references contain several other charac-

terizations of the Fair Share allocation function16. While the game theory literature typically con-

centrates on the properties of the Nash equilibria itself, here we introduce some out-of-equilibrium

considerations as well.

5.4 Network of Switches

One area that remains unexplored is the properties of a network of such switches. There are two

key problems to face. First, while we have assumed in our model that the sources are all Poisson,

the output process from nontrivial service disciplines are not. Thus, one would need to characterize

such output processes and the queueing behavior resulting at the next switch. This is a daunting

challenge. Second, even if we use the approximation of modeling the output processes as Poisson

with the same rate as the input rate, the game theoretic treatment must be generalized. The theory

should re
ect the fact that users care only about the total congestion; in terms of congestion in the

individual switches, this can be expressed as ci =
P

� ci
� where � is an index that identi�es the

switches in the networks and i identi�es the users. Straightforward generalizations of most of the

single-switch results remain true for networks. However, the fairness result is rendered irrelevant; a

di�erent de�nition of fairness is needed to meaningfully compare allocations to users using di�erent

routes.

16The Fair Share allocation function is referred to there as the serial cost sharing method.
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5.5 Generalizations

We have applied game-theoretic ideas to the problem of network congestion control. Much of the

formalism is directly applicable to any resource sharing problem where users are concerned about

both the amount and quality of service, and where the central resource produces lower quality

output as the total amount of service required increases. The server is described by a constraint

function which represents the feasible tradeo�s between quality and amount of service. Di�er-

ent constraint functions give rise to di�erent conclusions; in particular there are some constraint

functions that allow the guarantee of Pareto optimal Nash equilibria. Aside from the speci�c for-

malism, the basic ideas presented here apply equally well to a much more general class of distributed

resource allocation problems, such as �le location and load sharing. Often these problems are ad-

dressed through the design of e�cient algorithms to compute optimal or near-optimal allocations.

These algorithms su�er from the same problems that we discussed for cooperative 
ow control. In

particular, the cooperative approach assumes both that all users are willing to cooperate and that

they are able to cooperate, in that they all know which distributed algorithm to run. As systems

get larger, and as computer systems become more heterogeneous, the second assumption, if not

the �rst, becomes more questionable. The noncooperative approach outlined here o�ers a di�erent

vision of coordinating a mass of independent users which requires neither of these assumptions.
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A Appendix

Before proceeding, we present several Lemmas.

Lemma 1 The Fair Share allocation is the only allocation function in MAC such that
@Ci
@rj

= 0

whenever rj = ri, i 6= j.

Proof of Lemma 1: Let ~C(~r) be an allocation function in MAC such that @Ci
@rj

= 0 whenever

rj = ri, i 6= j. Consider some ~r (labeled so that the ri are in increasing order). At the point

(r1; r1; r1; r1; :::) we know that @Ci
@rj

= 0 for all i 6= j. The properties of MAC then imply that we

can increase the other components ri, i � 2, without changing C1: C1(~r) = C1(r1; r1; r1; r1; :::) =

CFS
1(~r). Now, consider the point (r1; r2; r2; r2; :::). As before,

@Ci
@rj

= 0 for all i 6= j, i; j � 2, so

we can increase the components ri, i � 3, without changing C2: C2(~r) = C2(r1; r2; r2; r2; :::) =

CFS
2(~r). We can continue this procedure for all the components. Thus, we must have ~C(~r) =

~CFS(~r) for all ~r. 2

Lemma 2 For any allocation function inMAC,
n
@Ci
@rj

= 0 for all i 6= j
o
) frj = ri for all i; jg.

Proof of Lemma 2: Consider an allocation function ~C in MAC. Assume that there exists a

point ~̂r such that @Ci
@rj

= 0 for all i 6= j and that r̂2 > r̂1. In what follows, restrict r1 and r2

to be in the range [r̂1; r̂2], and consider all other components �xed: rj = r̂j for all j > 2. From

condition (3) in the de�nition of MAC, we know that the Ci's for i 6= 1 remain invariant as

we vary r1 in this range. The constraint equation gives us an expression for C1 as a function of

r1: C1(~̂rj
1r1) = C1(~̂r) + f(~̂rj1r1) � f(~̂r). Furthermore, when we decrease r2 below r̂2, none of

the Cj can increase. This leads to the inequalities C1(~̂rj
1r1) � C1(~̂rj

1;2r1; r2) and f(~̂rj1;2r1; r2) �

f(~̂rj1r1) + C1(~̂rj
1;2r1; r2) + C2(~̂rj

1;2r1; r2) � C1(~̂rj
1r1) � C2(~̂rj

1r1). Setting r1 = r2 and combining

these expressions, we �nd that 2f(~̂rjr1) � f(~̂rj1;2r1; r1) � f(~̂r) � C2(~̂r) + C1(~̂r) � 0. Denoting the

left-hand side of this inequality by g(r1), we can see that (1) g(r̂2) = 0, (2) g0(r̂2) = 0, and (3)

g00(r̂2) < 0. Thus, the inequality is necessarily violated for r2 = r̂2 � � with su�ciently small �,

thereby reaching a contradiction. 2

For the next Lemma, we need the following de�nition. For any matrix Xi;j , a k-cycle is a nonre-

peating set of indices i1 ; i2 ; ::: ; ik (setting ik+1 = i1) such that all elements Xij;ij+1 6= 0. A

matrix is acyclic if there are no k-cycles for k � 2.

Lemma 3 The Fair Share allocation is the only allocation function in MAC such that the matrix

@Ci
@rj

is always acyclic.

Proof of Lemma 3: From symmetry, fri = rjg )
n
@Cj
@ri

= @Ci
@rj

o
. Thus, for the matrix @Ci

@rj
to be

always acyclic, we must have @Ci
@rj

= 0 whenever rj = ri with i 6= j. From Lemma 1 we know that

this uniquely characterizes the Fair Share allocation function in MAC. 2

Lemma 4 Consider a set of utility functions in AU . Under the Fair Share mechanism, every point

satisfying the Nash FDC is a Nash equilibrium.

Proof of Lemma 4: The convexity of Ui and the fact that @2CFSi
@ri

2 > 0 imply that, for any ~̂r,

the function gi(ri) � Ui(ri; ~C(~̂rj
iri)) is concave. Thus, the Nash FDC is su�cient to guarantee the

satisfaction of the Nash condition. 2

Lemma 5 Consider an allocation function ~C(~r) in MAC. For any point ~�r 2 D, there is a set of

utility functions in AU such that this point ~�r is a Nash equilibrium.
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Proof of Lemma 5: Recall that a point ~�r is a Nash equilibrium i� the functions gi(ri) �

Ui(ri; ~C(~�rj
iri)) all have their global maxima at ri = �ri. Consider some point ~�r 2 D and de�ne

~�c = ~C(~�r) and the set of utility functions Ui(r; c) = U r
i(r) + U c

i(c) with U r
i(r) = �

�i
2

�i
e
��i
�i

(r��ri)

and U c
i(c) = �


i
2

�i
e
�i

i
(c��ci), where �, �, 
, and � are all positive constants . These utility functions

are in AC. Set the parameters �i and 
i such that �i

i

= @Ci
@ri

, so that the Nash FDC is satis�ed.

Note that when �(�i
i
2 + �i�i

2)
i
�3 < @2Ci

@ri2
, the values �ri are all local maxima of the functions

gi(ri). Given the allocation function, we can then �nd su�ciently large values of �i and �i such

that the values �ri are all global maxima of the functions gi(ri), making ~�r a Nash equilibrium.

To see this, consider the limit of very large �i and �i. There are two categories of points: (1)

ri > �ri and so Ci(~�rjri) > Ci(~�r), and (2) ri < �ri and so Ci(~�rjri) < Ci(~�r). For points in category (1),

U r
i(ri) � U r

i(�ri) and U c
i(Ci(~�rjri)) � U c

i(Ci(~�r)). For points in category (2), U r
i(ri) � U r

i(�ri)

and U c
i(Ci(~�rjri)) � U c

i(Ci(~�r)). Thus, for all points in categories (1) and (2), gi(ri) < gi(�ri). 2

Proof of Theorem 1: The reasoning here follows closely, until the �nal step, that in [23], page

1023. Assume, to the contrary, that ~C(~r) is an allocation function in MAC such that every Nash

equilibrium is also Pareto optimal. From Lemma 5, for any point ~r 2 D we know that we can �nd

a vector of utility functions ~U 2 AUN that has this point as a Nash equilibrium. Combining the

Pareto and Nash FDC conditions, the allocation function must satisfy the relation Zi(ri; ci) = �
@Ci
@ri

throughout D. Note that this condition no longer involves the utility functions, but is merely a

property of the constraint and the allocation function. For our constraint function, Zi(ri; di) = �
@f
@ri

so the necessary FDC condition becomes @Ci
@ri

= @f
@ri

. Upon integrating we can express the allocation

function in terms of a set of functions hi: Ci = f � hi, where
@hi
@ri

= 0. Demanding that the

allocation function satisfy the constraint yields the relation (N � 1)f(~r) =
PN

i=1hi(~r). This is

clearly not satis�ed by our constraint function (consider, for instance, applying the partial derivative
@n

@r1@r2:::@rn
to both sides of the equation). 2

Proof of Corollary 1: When we add the parameters ~� to the allocation function, the Pareto

FDC's are unchanged (since they are properties of the allocations, not the mechanism) and the

Nash FDC's are merely augmented by the additional condition @Ci
@�i

= 0. As long as there is

an open neighborhood of points that are all Nash equilibria of some utility pro�le (which there

must be if the set of Nash equilibria has nonempty interior), then the proof of Theorem 1 applies

to that neighborhood as well. The existence of an allocation mechanism for which every Nash

equilibrium is Pareto optimal would imply the existence of functions hi(~r; ~�) such that, throughout

this neighborhood, Ci = f � hi where
@hi
@�i

= @hi
@ri

= 0. Again, the constraint condition yields

(N � 1)f(~r) =
PN

i=1hi(~r; ~�) which cannot hold for our particular constraint function f(~r). 2

Proof of Corollary 2:

1. Let Ci(~r) = f(~r) � hi(~r). The condition that f(~r) � hi(~r) � 0 assures that this ~C(~r) maps

into the set of nonnegative allocations. At every Nash equilibrium the Nash FDC must hold.

With this choice of ~C(~r), the Nash FDC implies the Pareto FDC. The Pareto FDC, in turn,

implies Pareto optimality because of the convexity condition on the feasible set.

2. This result follows from the proof of Theorem 1.

2
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Proof of Theorem 2:

1. From the proof of Theorem 1, we know that at a Nash/Pareto point we have the FDC
@Ci
@ri

= @f
@ri

. The feasibility condition on allocation functions requires that
PN

i=1Ci = f(~r).

Taking the derivative of this expression with respect to rj and then combining it with the

Nash/Pareto FDC, we �nd that
P

i 6=j
@Ci
@rj

= 0. Since allocation functions in MAC have
@Ci
@rj

� 0, we must have @Ci
@rj

= 0 for all j 6= i. Thus, following Lemma 2, we have ri = rj for

all i; j.

2. At such a symmetric point, the delay values are completely determined by the constraint so

the Fair Share allocation function realizes the same Pareto optimal allocation. The question

is whether or not this point is a Nash equilibrium for the Fair Share allocation function. The

Fair Share mechanism satis�es the Nash FDC conditions, since @Ci
@rj

= 0 for all j 6= i at this

point, which is su�cient, from Lemma 4, to guarantee that this point is a Nash equilibrium.

Thus, any completely symmetric ~r that gives rise to a Pareto optimal allocation is also a Nash

equilibrium of the Fair Share allocation function.

2

Proof of Theorem 3:

1. Assume that user 1 has the utility function U in AU . User 1 will envy user 2 if the function

E(r1; r2) = U(r2; C
FS

2)�U(r1; C
FS

1) is positive. For a given r2, let r1 assume the value that

maximizes U(r1; C
FS

1); call this value rum, the unilateral maximum. At this point we have

the FDC d
dr1

U(r1; C
FS

1) = 0. There are two cases. If rum � r2 then there is no envy because

E(rum; r2) � E(r2; r2) = 0. We now need to show that if rum < r2, then E(rum; r2) � 0.

Let us maximize this envy by �xing r1 = rum and varying r2 between rum and 1. Note that

varying r2 does not a�ect C
FS

1 under the Fair Share allocation function, so that maximizing

the envy is equivalent to maximizing the function U(r2; C
FS

2). But, from the de�nition of

rum, we know that this function satis�es the FDC d
dr2

U(r2; C
FS

2) = 0 at r2 = rum and also

that d2

dr22
U(r2; C

FS
2) � 0 for r2 between rum and 1. Thus, when rum < r2, we have no envy

since E(rum; r2) � E(rum; rum) = 0. This proof also applies to all subsystems.

2. Consider a unilaterally envy-free allocation function in MAC. As in the proof of part (1),

we �x the variables rk for k � 3 and will vary r1 and r2 in an attempt to make user 1

envious of user 2. Consider the two user subsystem with both users having this same utility

function U(r; c). Lemma 5 implies that, for any symmetric point (r1 = r2) in this two

user subsystem, we can choose U so that the point is a Nash equilibrium. Consider any

symmetric point r1 = r2 = rNash, de�ne cNash = C1(~rj
1;2rNash; rNash), and choose, as in

Lemma 5, U(r; c) = �
�2

�
e
��

�
(r�rNash) �


2

�
e
�


(c�cNash) with the parameters �, �, 
, and �

chosen appropriately ( �


= @C1

@r1
, and �,� su�ciently large). De�ne the function �r1(r2) as

the value of r1 that, for a given r2, maximizes U(r1; C1(r2; r1)). This function is smooth in

the neighborhood of the point r2 = rNash. We know that �r1(rNash) = rNash. Note that
d
dr1

U(r1; C1(r2; r1)) = 0 when evaluated at r1 = �r1(r2). The amount of envy is described by

the function

E(r2) � U(r2; C2(�r1(r2); r2))� U(�r1(r2); C1(�r1(r2); r2))
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Clearly, E(rNash) = 0. If we can �nd a value of r2 such that E(r2) > 0 then the allocation

function is not unilaterally envy-free. If the system is unilaterally envy-free then we must

have d
dr2

E(r2) = 0 at the Nash point r2 = rNash. This requires that (with all quantities

evaluated at r1 = r2 = rNash)

0 =
@U

@r

@C2

@r1
(
d�r1

dr2
� 1)

However, @U
@r

< 0, so either @C2
@r1

= 0 or d�r1
dr2

= 1.

The condition d�r1
dr2

= 1 at r2 = rNash gives rise to the condition

� + �
@C1

@r1

�
@C1

@r1
+
@C1

@r2

�
+ 


(
@2C1

@r2@r1
+
@2C1

@r12

)
= 0

Since we are free to vary the values of � and � (as long as they obey the inequality condition),

it is impossible for an allocation function to guarantee that d�r1
dr2

= 1. Thus, we must have
@C2
@r1

= 0 (with all quantities evaluated at r1 = r2 = rNash). Therefore, the allocation function

must satisfy @Ci
@rj

= 0 whenever rj = ri, i 6= j. This uniquely speci�es the Fair Share allocation

function in MAC.

2

Proof of Theorem 5:

1. This follows from Theorem 8 in [8].

2. Consider a two-user subsystem and some pro�le (U1; U2) and Nash equilibrium (r1; r2). As-

sume that it is also a Stackelberg equilibrium of the two-person subsystem and assume that
@C2
@r1

6= 0. By using the utilities introduced in the proof of Lemma 5, we can choose utili-

ties such that the best-reply function ~�r(r1) is di�erentiable with d�r2
dr1

6= 0 around the Nash

equilibrium. The necessary but not su�cient �rst derivative condition is

dU1(r1; C1(~�r(r1)))

dr1
= 0

This condition can be reexpressed as:

M1(r1; c1) = �
@C1

@r1
�
@C1

@r2

d�r2

dr1

Since this is also a Nash equilibrium, we must also have

M1(r1; c1) = �
@C1

@r1

Combining these expressions, we have @C1
@r2

d�r2
dr1

= 0. However, since we know that this second

term is nonzero, the �rst term must vanish. Thus, @C2
@r1

6= 0 ) @C1
@r2

= 0. Therefore, when

r1 = r2 we must have
@C2
@r1

= @C1
@r2

= 0. From Lemma 1, this implies that we must have the

Fair Share allocation function.
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2

Proof of Theorem 7:

1. Recall the de�nitions Ei = Mi(ri; Ci(~r)) +
@Ci
@ri

and Ai;j = �(i; j)� @Ei
@rj

�
@Ej
@rj

�
�1
. Since the

matrices @CFSi
@rj

and @2CFSi
@rj

2 are lower triangular (when we arrange the ri's in increasing order),

Ai;j is also lower triangular with zeros on the diagonal. This is clearly nilpotent. As before,

the proof carries over to all subsystems.

2. Clearly Ai;i = 0 in general. The condition of nilpotence requires that AN = 0. Consider, for

M � N ,

0 = [AM ]i;j =
NX

s1=1s2=1 ::: sM�1=1

Ai;s1As1;s2As2 ;s3 :::AsM�1;j

This sum can be partitioned into a sum over combinations (C's) of M integers in [1; N ] and

a sum over permutations (P's) of that combination.

0 = [AM ]i;j =
X
C0s

X
P 0s

Ai;s1As1;s2As2;s3 :::AsM�1;i

By choosing the Ui's appropriately, we can freely adjust the terms in Ei depending on deriva-

tives of Mi. Thus, each sum over permutations of a particular combination must separately

vanish. Assume that the matrix Ai;j has a cycle. Let Kmin be the length of the shortest cycle

and assume, without loss of generality, that this cycle is made up of elements 1; 2; :::;Kmin.

Since Ai;i = 0, Kmin > 1. There can be no other cycle of length Kmin with the same com-

bination of integers, since one could then combine these two cycles to form a shorter cycle.

Consider the term [ANKmin ]1;1. Each term in the sum over permutations of the combination

of elements of N copies of [1; ::; Kmin] consists of (1) an N-fold product of the original cycle

(which does not vanish), (2) an ordering of indices that contains a shorter cycle (and therefore

vanishes), or (3) a permutation of our shortest cycle (which must also vanish). However, the

nilpotent condition requires that the total sum vanish. Thus, by contradiction, there can

be no cycles. The vanishing of a term Ai;j for i 6= j for all Mi requires both
@Ci
@rj

= 0 and

@2Ci
@ri@rj

= 0. Thus, acyclicity of the dynamical stability matrix is equivalent to acyclicity of

the dependency matrix. The only MAC allocation function having an acyclic dependency

matrix is the Fair Share allocation function (from Lemma 3).

2

Proof of Theorem 8:

1. The Fair Share allocation ~CFS(~r) satis�es the equation

F ((r1 ; r2 ; r3 ; :::rk � 1 ; rk ; rk ; rk:::) ; (C1 ; C2 ; C3 ; :::Ck � 1 ; Ck ; Ck ; Ck:::)) = 0

for all k, when the users are labeled in increasing order of ri's. Clearly @Ci
@rj

= 0 whenever

rj � ri, and
@Ci
@rj

> 0 otherwise. Therefore, Ci
FS(~r) � Ci

FS(~eri), proving protectiveness.
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2. Consider a protective MAC allocation function ~C and a subsystem with only two users.

When r1 = r2 symmetry requires that C1 = C2 and this value is determined by the constraint

function. If we continuously increase r2 holding r1 constant, then C1 must also remain

constant. This is because the monotonicity conditions in MAC require that C1 not decrease

when increasing r2 and the protectiveness condition of the hypothesis requires that C1 never

be more than its value when all users in the subsystem request the same amount. Since

this applies to every two user subsystem of larger systems, we must have @Ci
@rj

= 0 whenever

ri � rj . This condition, as shown in Lemma 1, uniquely speci�es the Fair Share allocation

function in MAC.

2
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