Copyright Protection

Lecture 1: Watermarking and Fingerprinting

(passive copyright protection)

Lecture 2: Tracing and Revoking pirates.

(copyright protection via encryption)

.

Copyright Protection

- Digitalollects are very easy to copy:
 Usici Dovies Teltollecutales Delmoney.
- 🛮 oll_ to protect_digital_copyrighted content
 - ain topic oll this lecture.
- $\bullet \ \square$ hould content $\square e$ protected \square (not our main topic)
 - $\hfill\square$ \hfill \hfill
 - I hould not conflict [] ith [Dair[]use] doctrine.
- ◆ Can content 🛮 e protected 🗓
 - □ Persistent pirate □ i□a□ ays succeed in copying.
 - □ Technology can potentially prevent small scale copying:
 □ keeping honest people honest□

_

0 ethod 1: copyright cra0 lers

- ◆ From here on all ays use music as an elample.
- ◆ 🛘 uppose 🖟 e had a <code>[content[al]</code> are<code>[]</code> hash <code>[unction: all: bhost of the bh</code>

satis□ying:

- 1. \square \square \square 1 and \square 2 are t \square o music c \square ps (e.g. \square PD \square ilbs) that play the \square same \square song then \square \square (\square 1) \square \square (\square 2)
- 2. \square iven a c\(\mathbb{D}\) \(\mathbb{D}\) \(\ma
- ◆ 🛮 ash <code>□unction</code> must resist a□signa□processing tricks□
- ♦ 🛮 o such hash 🗓 unctions e🗓 ist 🗓 🗒
 - □ □ nkno□ n. (some claim to have them)

I sing these hash Iunctions

- ♦ Write a copyright crall ler as lollbl s:
 - □ Cra□ [er has □ □ o□ hashes o□ a□copyrighted content.
 - Crall ler constantly scans all lel sites lal al netlork la apster letc.
 - $\hfill\Box$ For every music $\hfill\Box$ iile $\hfill\Box$ compute hash o $\hfill\Box$ music $\hfill\Box$ iile and compare to $\hfill\Box$ $\hfill\Box$.
 - I II match is Dound call the lad yers.
- ◆ Pro□lems:
 - ash Dunctions unlikely to ellist Dor music.
 - □ □ oes not protect against anonymous postings: pu□□us
 - □ □ ery high □ ork\(\text{D}\) ad.

amples

- ♦ 🛮 igi🗓 arc 🗈 arc 🖺 pider. 🗈 cans 🗈 or pirated images.
- ◆ □ C□ □: □.□hivakumar□□tan□ord.
 - $\mbox{\tt l}$ crall $\mbox{\tt l}$ the $\mbox{\tt l}$ ell boking $\mbox{\tt lor}$ academic plagiarism.
 - Deveral success stories.

□ □ght improvement: □ atermarking

- ♦ [content[al] are] hash [unctions may not e] ist.
- $\bullet \;\; \mathbb{I}$ dea: at the recording studio em \mathbb{I} ed a hidden \mathbb{I} atermark in the music \mathbb{I} ile:
 - $\ \square$ $\ \square$ $\ \square$ $\ \square$ $\ \square$): outputs a $\ \square$ atermarked version o $\ \square$ music $\ \square$ ith the in $\ \square$ ormation $\ \square$ em $\ \square$ edded in it.
 - Retrieve(] []): takes a [] atermarked music [] i[]e [] [] [] and outputs the em[] edded [] atermark [].
- ◆ Properties:
 - □ Watermark must 🛮 e inaudi 🗓 🗓 e.

 - 🛘 🖟 ote: 🖟 atermark must resist all signal processing tricks. Resampling[] cropping[] [b] [] opass [] iltering[] []

5

1

0ssues

- ◆ Copyright crall [er uses [Retrievel] alborithm.
- - Copyright crall ler does not need to maintain [] o all copyrighted material
 - O need Oor content all are hash.
 - Watermarking music [seems] to [e an [easier] prol[em.
- ◆ 🛮 ame pro🗆 lems as 🗓 ellore:
 - O oes not delend against anonymous postings.
 - □ □ igh □ ork bad.

Rollust latermarks

- ♦ 🛮 ote: typically 🗓 m 🖟 ed 🖟 Retrieve algs are kept secret.
- ♦ 🛮 o ro🛮 ust 🖟 atermakring systems e🗓 ist 🗓 🛮 🖟 nkno 🖟 n.
 - □ 🛮 tir 🗈 ark: generic too 🗀 or removing image 🗀 atermarks. Divious of atermarking scheme.

□□□□□ cha∏enge:

🛚 🖟 lroken: Feltenlet all

Obj1 Obj1 mark

Obj2 mark

Watermarking Images (>200 papers)

- ◆ DigiMarc: embeds creator's serial number.
 - Add or subtract small random quantities from each pixel. Embedded signal kept secret.
- ◆ Signafy (NEC).
 - Add small modifications to random frequencies of entire Fourier Spectrum.
 - · Embedded signal kept secret.
- ◆ Caronni: Embed geometric shapes in background.
- ◆ SigNum Tech. (SureSign).

atermarking Music (IIIII) papers)

- ◆ Aris Tech (MusicCode):
 - · 🛮 ate: 🕮 🖺 bits 🗈 sec of music

Merged to form Verance Used by SDMI

- ◆ Solana (E□DNA)
 - · 🛮 sed by 🗓 iquid Audio.
- ◆ Argent:
 - · Embed full text information.
 - · Frame ased: info. inserted at random areas of signal
 - · Secret key determines random areas.

Method 2: policy watermark

- No copyright crawlers.
- Embed usage policy as watermark in music file.
- Every music player in the world works as follows:
 - Use Retrieve algorithm to check if watermark exists.
 - If so, play music only if policy is satisfied (e.g. payment, authorized player, etc.).
- Big big problems with this:
 - How to upgrade all music players? Why would consumers agree?
 - Retrieve algorithm is in the public domain.
 - Makes watermarking an even harder problem.
 - · Open source players will ignore embedded policy.
- Seems to be the approach preferred by RIAA.

Method []: []ingerprinting

- ◆ No copyright crawlers. No big brother □□ players.
- ◆ □ompletely passive.
- ◆ Basis idea:
 - embed a unilue user II into each sold copy.
 - If user posts copy to web or Napster, embedded user II identifies user.
- Iroblem:
 - Need ability to create distinct and indistinguishable versions of oblect.
 - Oollusion: two users can compare their oblects to find parts of the fingerprint.

[race [Revoke schemes

Ontent protection via encryption

- ◆ Basic idea:
 - Dontent distributor encrypts content before releasing it. Release: D EnContentD
 - $\cdot \ \square$ ecryption key embedded in all players.
 - · Dlayer will only decrypt if policy is satisfied.
- Note: cannot prevent copying after decryption.
 - · User can probe bus to sound card.
 - Unlike watermarking: watermark is embedded in content.

 ☐ ropagates in cleartext copies of content.
- ◆ □roblem: what if one pirate uses reverse engineering to expose global key k??

1.4

Example: [SS

- ♦ [SS: Content Scrambling System
 - · Used to protect [] [movies.
- ullet Each $[\,]\,[\,]$ player manufacturer i has key $[\,]_{\rm i}$, e.g. $[\,]_{\rm sony}$
 - Embed same key \square_{sony} in all players from sony.
 - Every □ □ □ movie M is encrypted as follows:
 □ enc□content □ E_□□M□ □ □ a random key.
 - . E_{Dsonv}OkO , E_{Dshilips}OOO , O
 - · About [] [] manufacturer keys.

Iroblems with ISS

- ♦ [] e[] SS:
 - Extracted manufacturer key from ling software player.
 - · \square ould then decrypt any $\square\,\square\,\square$ movie that could be played on the \square ing player.
 - · Maa revoked aing key: disabled all aing players.
- Bigger problem:
 - · Encryption algorithm in DSS is based on DDSRB
 - · 🛮 ery fast: video rate decryption on weak 🗓 🗓 🗎 player.
 - · Dery weak: given one manuf. key can get all keys.

Better revocation techni ue

• Basic idea: embed a distinct key in every player.

- Every node v has an associated key □v.
- Every player corresponds to leaf node.
- ◆ Dey for player i: all keys on path from root to leaf i.

17

Revocation

- ullet Initially: encrypt all content with key at root.
 - · Any player can decrypt content.
- When player i is revoked encrypt content-key so that all players can decrypt other than player i.

18

$\hfill \square$ ow to tell which player to revoke $\hfill \square$

- ◆ When pirate p□□lishes sin□le key on Internet□□ □AA knows which keys to revoke.
- \bullet What i ${\ensuremath{\square}}$ pirate sells pirated players ${\ensuremath{\square}}$
 - $\hfill\Box$ ow can $\hfill\Box$ \hfill \hfill which keys e $\hfill\Box$ edded in player $\hfill\Box$
- ◆ 🛮 ol□tion: 🗓 racin□ syste□ s can interact with player and deter□ ine how to revoke that player.
 - · 🛮 ow 🖺 o 🗎 ework.

19